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Fixed-point Design of the

Lattice-reduction-aided Iterative Detection and

Decoding Receiver for Coded MIMO Systems

Qingsong Wen, Minzhen Ren, Xiaoli Ma

School of Electrical and Computer Engineering,

Georgia Institute of Technology,Atlanta, Georgia 30332

I. INTRODUCTION

With the evolution of wireless communication systems, the multiple input multiple output

(MIMO) system has been adopted to provide higher data rate [1]. In addition, error control

codes (ECC) are usually included in the system to enhance the information reliability, e.g.,

Turbo Codes [2] and Low Density Parity Check (LDPC) codes [3]. The challenge to apply both

MIMO and ECC into wireless systems is on designing a reliable but low-complexity receiver.

The optimal receiver for coded MIMO systems is to use a joint detector and decoder for

the whole coded data block, which is extremely complex and infeasible in the practical system

due to the long length of coded data block. Although decoupled detectors and decoders can

significantly reduce the complexity, the performance would be largely degraded compared to

the optimal receiver. In order to balance the complexity and performance, the receiver with

iterative detection and decoding (IDD) is proposed in [4], where the separate soft-input soft-

output (SISO) detector and SISO decoder are used to achieve the near-optimal performance by

exchanging extrinsic information iteratively.

The optimal SISO detector under IDD for coded MIMO systems would be the maximum a

posteriori (MAP) detector, which is often with high complexity especially when the constellation

size and/or the channel dimension are high. The list MIMO detectors, such as the list sphere

detector [4] and the list sequential detector [5], are an attractive choice as they allow a flexible



2

tradeoff between performance and complexity. One key issue of the list MIMO detector is to

generate a list of candidates containing the transmitted symbol vectors with low complexity.

The way to find the list and the number of candidates in the list are directly related to both

performance and complexity. So it is desirable if the detector can obtain the near-optimal

performance only using a small number of candidates.

Recently, lattice reduction (LR) technique has been proposed to improve the performance of

MIMO detector in [6], [7], and [8], by transforming the channel matrix into a better-conditioned

matrix. It is shown that LR-aided linear detectors can achieve the full diversity of the maximum

likelihood (ML) receiver. Furthermore, the combination of LR with list MIMO detection like

K-best detector [9] shows that it can maintain near-ML performance even with very low K

values (the number of candidates), which means much lower complexity of the detector. The

LR-aided IDD algorithms with list MIMO detector have been well studied in the literature [10].

However, there are few papers focusing on the fixed-point design for the whole LR-aided IDD

system, which is a key step for practical hardware implementation in VLSI chips or FPGAs.

In this paper, we evaluated the LR-aided IDD performance under finite precision in operands

and arithmetic operations, and designed the detailed fixed-point implementation for the whole

LR-aided IDD receiver based on that the bit error rate (BER) performance of the fixed-point

system could be within 0.2dB degradation compared to the performance of the corresponding

floating-point system.

The rest of this paper is organized as follows. Section II presents the system model of the

LR-aided IDD receiver for MIMO coded systems. Section III introduces the key algorithms

used in the fixed-point LR-aided IDD receiver. Section IV provides the detailed fixed-point

implementation for the whole LR-aided IDD receiver followed by the conclusion in Section V.

II. SYSTEM MODEL

Consider a coded multiplexing transmission system depicted in Fig. 1. At the transmitter, a

sequence of binary information bits b is random produced, passed the ECC, and interleaved.

Then the coded sequence c is mapped into a symbol sequence s where the constellation size is

k bits/symbol. For the system with N transmit and M receive antennas, the MIMO transmission

can be expressed as:

y = Hs + w, (1)
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where theH is assumed as a M ×N complex Gaussian channel matrix with zero mean and unit

variance, the N × 1 vector c consists of the information symbols drawn from a constellation

S, y is the M × 1 received vector, and w is the complex additive white Gaussian noise with

variance σ2
w. Suppose that E[ssH ] = IN , and E[wwH ] = σ2

wIM . We assume that the channel

matrix H is time-invariant during a certain block which is greater than a symbol period and

change independently from block to block, and it is known at the receiver but unknown at the

transmitter.
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Next, we will focus on the LR-aided soft-output sphere decoding. Consider a 
coded multiplexing transmission system depicted in Figure. 2 as follows 

 
Figure 2. Block diagram of coded linear systems with iterative receiver 

Here suppose a sequence of binary information bits b is after ECC and 
interleaving, and then the coded sequence c is mapped into a symbol sequence s 
where the constellation size is κ bits/symbol. At the receiver, iterative detection and 
decoding structure is adopted to exchange extrinsic information between the 
soft-output detector and the soft decoder of the ECC. Given the above system model, 
the extrinsic information is calculated by a posteriori probability (APP), which, for the 
ith bit of c, is approximated as [20] 

 

where Si,+1 represents the set of all the κN-bit-long sequences with the ith bit as +1 and 
similarly defined Si,−1. Then, this new APP is passed to the soft decoder of ECC, 
which takes it as the priori information. Now both complexity and performance 
depend on the size of the candidate list Cs. If the list of candidates is too long, the 
complexity is too high (near the exhaustive search), but if the list is too short, the 
performance will be close to the one of hard detectors. In the following, the 
CLLL-based low-complexity algorithms will be used to generate the lists of 
candidates [21].  

For LR-aided hard detectors, the first step is to obtain an estimate of z in (2) and 
then s is estimated through one-to-one mapping. Different from the SD method in [23], 
the sphere here is built in the z-domain centered at LR-aided estimate instead of the 
s-domain centered at ZF estimate or other estimate from preprocessing. However, 
because of matrix T, the constellation of z is not ready. Some candidates ẑ  on 
integer lattice may not generate valid candidates in s-domain. One way is to find all 
possible z’s and then perform searching. This costs high computational complexity. 

Fig. 1. Block diagram of LR-aided IDD receiver for coded MIMO systems

At the receiver, LR-aided IDD structure is adopted to exchange extrinsic information between

the SISO detector and the SISO decoder. The extrinsic information LE,t is first calculated by the

SISO detector based on the observation y, the channel H , and the pror information LA,t which

is fed back by the SISO decoder. Then, the extrinsic information from the detector is passed

through the interleaver to the SISO decoder, which takes it as priori information LA,d to obtain

the information bits and calculate new extrinsic information LE,d to feed back to the detector.

Thus, the receiver is designed in an iterative way between the detection and decoding.

III. KEY ALGORITHMS IN LR-AIDED IDD RECEIVER

A. Lattice Reduction

In the MIMO transmission model in Eq. (1), the received signal vector y is the noisy

observation of the vector Hs, which is in the lattice spanned by the columns of H since

all the entries of s can be transformed to complex integers by shifting and scaling. In general,

a lattice has more than one set of basis vectors.
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There exist some bases that span the same lattice as H but are closer to orthogonality than

H . The process of finding a basis closer to orthogonality is called LR. Theoretically, finding an

optimal set of bases (closest to orthogonality) in a lattice is computationally expensive. Thus,

the ultimate goal of LR algorithms is to find a ”better” channel matrix H̃ = HT where T as a

unimodular matrix, which means that all the entries of T and T−1 are complex integers and the

determinant of T , is ±1 or ±j. The restrictions on the matrix T ensure that the lattice generated

by H̃ is the same as that of H .

Generally, LR techniques involve preprocessing H to produce a reduced-lattice basis H̃ =

HT . This factorization allows us to rewrite the system in Eq. (1) as

y = HT (T−1s) + w = H̃z + w. (2)

Here we adopt the complex LLL (CLLL) algorithm [8], [11] to perform the LR on the channel

matrix H. The detailed pseudo-code of the CLLL algorithm can be summarized as follows in

Fig. 2 [8].

312 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 2, FEBRUARY 2008

and thus infeasible for practical problems. The LLL algorithm
does not guarantee to find the optimal basis, but it guarantees
in polynomial time to find a basis within a factor to the optimal
one [11]. Since complexity is one of our major concerns, we
adopt the LLL algorithm for LR here.

A reduced basis for a real lattice is defined in [11]. As
shown in [11, Proposition 1.26], the worst case of the number
of arithmetic operations needed by the LLL algorithm to find
a new basis is O(N4), where N is the size of the basis.
Most of existing results in [18], [22], [24] adopt the real
LLL (RLLL) algorithm in [11] and use the real LR-aided
equalizers. In the following, we provide a detailed complex
LLL (CLLL) algorithm which reduces the RLLL’s complexity
without sacrificing any performance.

Let us first extend the definition of a reduced basis in [11]
to the complex field.

Definition 2: An M × N complex matrix H̃ is called a
reduced basis of a lattice if the QR-decomposition H̃ = Q̃R̃
satisfies the following two conditions:

|�[R̃i,k]| ≤
1

2
|R̃i,i|, |�[R̃i,k]| ≤

1

2
|R̃i,i| , ∀ i < k,

δ|R̃i−1,i−1|2 ≤ |R̃i,i|2 + |R̃i−1,i|2 , ∀ i ∈ [2, N ], (18)

where the parameter δ now is arbitrarily chosen from ( 12 , 1)
2,

and R̃i,k is the (i, k)th entry of R̃.
The detailed pseudo-code of the CLLL algorithm can be

found in Table I. The parameter δ controls the complexity
and performance of the LLL algorithm and the bigger δ is, the
higher the complexity is. Compared with the RLLL algorithm
in [23], [24], the major differences of the CLLL algorithm are:
(i) at Step (8), the rounding equation is on complex numbers;
and (ii) at Step (16), a complex unitary Θ is adopted. Because
the CLLL algorithm does not need to split the channel into
real and imaginary parts, it reduces the equivalent channel
matrix size. Later by simulations, we show that the CLLL
algorithm requires lower computational complexity than the
RLLL algorithm while not sacrificing any performance.

Following the CLLL algorithm, we find a “better” channel
matrix H̃ = HT from the original channel matrix H , where
T is a unimodular matrix, which means that all the entries of
T and T−1 are Gaussian integers and the determinant of T is
±1 or ±j. The following lemma shows the quantitative result
on the od of H̃ found by the CLLL algorithm.

Lemma 1: Given a matrix H ∈ CM×N with rank N , H̃
is obtained after applying the CLLL algorithm in Table I for
a given parameter δ ∈ ( 12 , 1). Then, the od of H̃ satisfies:

√
1− od(H̃) ≥ 2

N
2

(
2

2δ − 1

)−N(N+1)
4

:= cδ. (19)

Proof: See Appendix B.
For real H , Lemma 1 is consistent with the result in [11,

Proposition 1.8]. Here, we extend it to the complex field
according to the CLLL algorithm in Table I. Given δ and any
integer N ≥ 1, cδ is always less than 1. Therefore, od(H̃)

2Here, we need to note that [3] also extended the LLL algorithm to the
complex field based on the Gram-Schmidt orthogonalization with parameter
δ still chosen from ( 1

4
, 1). However, we find that for the complex LLL, δ

should fall in ( 1
2
, 1), otherwise the results in [11, Propositions 1.6-1.9] will

not hold true.

TABLE I

THE COMPLEX LLL ALGORITHM (USING MATLAB NOTATION)

INPUT: H; OUTPUT: Q̃, R̃, T
(1) [Q̃,R̃] = QR Decomposition(H);
(2) δ ∈ ( 1

2
, 1);

(3) m = size(H, 2);
(4) T = Im;
(5) k = 2;
(6) while k ≤ m
(7) for n = k − 1 : −1 : 1

(8) u = round((R̃(n, k)/R̃(n, n)));
(9) if u ∼= 0

(10) R̃(1 : n, k) = R̃(1 : n, k)− u · R̃(1 : n, n);
(11) T (:, k) = T (:, k)− u · T (:, n);
(12) end
(13) end
(14) if δ|R̃(k − 1, k − 1)|2 > |R̃(k, k)|2 + |R̃(k − 1, k)|2
(15) Swap the (k-1)th and kth columns in R̃ and T

(16) Θ =

�
α∗ β
−β α

�
where α =

R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖
;

β =
R̃(k,k−1)

‖R̃(k−1:k,k−1)‖
;

(17) R̃(k − 1 : k, k − 1 : m) = ΘR̃(k − 1 : k, k − 1 : m);
(18) Q̃(:, k − 1 : k) = Q̃(:, k − 1 : k)ΘH;
(19) k = max(k − 1, 2);
(20) else
(21) k = k + 1;
(22) end
(23) end

is bounded by 1 − c2δ . If H is singular, i.e., rank(H) < N ,
then Lemma 1 does not hold true since H is not a basis
any more. In this case, we need to reduce the size of H and
then apply the CLLL algorithm. From Lemma 1, we can see
that CLLL algorithm does not guarantee to reduce the od for
every realization of H , but the new basis H̃ now has an upper
bound on od which is strictly less than one. In the following,
we will show that thanks to this bound on od, LR-aided linear
equalizers collect receive diversity.

B. LR-aided Linear Equalizers

With the new channel matrix H̃ generated by the CLLL
algorithm, we apply the LR-aided ZF equalizer H̃

†
instead of

H†, and the output can be written as [22], [24]:

x = T−1s+ H̃
†
w = z + n. (20)

Since all the entries of T−1 and the signal constellation belong
to Gaussian integer ring, the entries of z are also Gaussian
integers. Thus, we can estimate z from x in (20) by rounding
up to integers. After obtaining ẑ, we can recover s by mapping
T ẑ to the appropriate constellation. We summarize the main
steps of the LR-aided ZF equalization for MIMO V-BLAST
systems in Table II. Regarding the LR-aided MMSE equalizer,
since the MMSE equalizer agrees with the ZF equalizer with
respect to the extended system in (8), to perform the LR-aided
MMSE equalizer is equivalent to applying the LR-aided ZF
equalizer in Table II but changes S5 according to the extended
system.

C. Performance Analysis of LR-aided Linear Equalizers

The diversity order collected by the LR-aided linear de-
tectors for MIMO V-BLAST systems is established in the
following proposition.

Fig. 2. Pseudo-code of CLLL algorithm
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For the CLLL algorithm, the main computation parts contain the QR Decomposition (Line 1

in Fig. 2), the Size Reduction part (Line 7-13 in Fig. 2), the Complex Lovasz Condition (Line 14

in Fig. 2), and the Basis Updating part (Line 16-18 in Fig. 2). In order to facilitate the fixed-point

design while to keep the performance at the same time, some modifications are adopted in [12],

where the Relaxed Size Reduction Condition is defined for the calculating of Size Reduction

part, the Complex Lovasz Condition is replaced by the Siegel Condition, the integer-rounded

division (Line 8 in Fig. 2) is implemented by using a single Newton-Raphson (NR) iteration

method, and the calculation of Θ (Line 16 in Fig. 2) is completed by Householder CORDIC

algorithm.

B. List MIMO detector

For the list MIMO detector in LR-aided IDD receiver, the authors in [10] proposed three

methods, i.e. fixed radius algorithm (FRA), fixed candidates algorithm (FCA), and fixed memory-

usage algorithm (FMA). FRA as well as FMA is a combination of sphere decoding [13] and LR,

which searches all possible candidates in the sphere. In this case the number of candidates is

random, which may cause difficulty on hardware implementation. FCA is a combination of K-

best algorithm [14] and LR, which applies an element-by-element searching with a fixed number

of points on each layer so that it is suitable for the hardware implementation.

For LR-aided linear hard detectors, LR is first applied on the channel matrix H followed by

the linear equalization based on the reduced-lattice basis H̃ . For example, when Zero Forcing

(ZF) equalizer is adopted, we can get

x = H̃
†
y = T−1s + H̃

†
w , z + n. (3)

Then we need to obtain an estimate of z in Eq. (3) and next the s is estimated through one-to-one

mapping, which implies we need to get a candidate list of z in the list MIMO detector. Different

from the SD method in [13], here the sphere is built in the z-domain centered at LR-aided

estimate instead of the s-domain centered at ZF estimate or other estimate from preprocessing.

However, because of matrix T , the constellation of z is not ready. Some candidates ẑ on integer

lattice may not generate valid candidates in s-domain. One way is to find all possible z’s and

then perform searching, which costs high computational complexity. Since our final goal is to

obtain s not z and the alphabet of s is known, so we need to find the list of candidates on s,
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Cs as:

Cs = {s̃ : ‖T−1s̃− x‖2 < rz}. (4)

To further reduce the complexity, we can apply QR decomposition for T−1 so that T−1 =

QTRT , then we obtain

‖T−1s̃− x‖2 = ‖QH
T x−RT s̃‖2. (5)

Here low complexity tree-searching methods can be performed by starting from the bottom

layer. In order to facilitate the hardware implementation, we select the FCA as the list MIMO

detector in the LR-aided IDD receiver for fixed-point design because its breadth-first tree-search

method has a fixed throughput like K-best method. Furthermore, FCA always includes the LR-

aided hard-decision in the candidate list to guarantee diversity. The detailed pseudo-code of the

FCA algorithm can be summarized as follows in Fig. 3 [10].
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Table 4. Procedure of the Fixed Candidates Algorithm (FCA) 

 

 
 

Table 5. Procedure of the Fixed Memory-usage Algorithm (FMA) 

 

 

III. Simulation Results 

In this section, the performance of the LR-aided hard-output and soft-output 
detectors are evaluated under simulation and analysis. Here we not only test the 
performance under floating-point simulation, but also plan to test their performance 
under fixed-point simulation, which is also the key step for hardware realization.  

Fig. 3. Pseudo-code of List MIMO detector with FCA

C. QR Decomposition

QR decomposition (QRD) is an essential component for both above-mentioned CLLL and FCA

algorithms. The QRD transform a matrix H into a unitary matrix Q and an upper triangular
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matrix R, i.e., H = QR. Three well known algorithms have been proposed to perform QRD:

Gram-Schmidt (GS) algorithm, Householder transformation (HT), and Givens rotation (GR).

In [15], [16], it has been shown that GS can be efficiently implemented through Coordinat

Rotation Digital Computer (CORDIC) and Triangular Systolic Array (TSA) algorithms. So GS

does not require norm and division operations by CORDIC algorithm, and it can easily adopt

parallelism when processing a large matrix by TSA algorithm. Furthermore, GS demonstrates

higher numerical stability with VLSI implementation in the QRD process compared with GS

and HT methods. Due to these reasons, we select the GS method as the QRD algorithm in the

LR-aided IDD receiver.

The QRD process under GS algorithm with TSA and CORDIC [15] can be illustrated on a

2× 2 complex matrix H as:

H =


 Aejθa Cejθd

Bejθb Dejθd


 , (6)

where j =
√
−1, A,B,C,D represent the magnitudes, and θa, θb, θc, θd stand for the angles of

the matrix entries. In order to get QRD of the H matrix, the H is first transformed by the

unitary matrix Q1 expressed by:

Q1 =


 cosθ1e

jθ2 sinθ1e
jθ3

−sinθ1ejθ2 cosθ1e
jθ3


 , (7)

where the three angles θ1, θ2, θ3 are calculated as follows:

θ1 = tan−1(C/A),

θ2 = −θa,

θ3 = −θb. (8)

After the above transformation, we can get an upper triangular matrix R1 as:

R1 = Q1H =


 cosθ1e

jθ2 sinθ1e
jθ3

−sinθ1ejθ2 cosθ1e
jθ3




 Aejθa Cejθd

Bejθb Dejθd


 =


 X Y ejθy

0 Zejθz


 . (9)

Next, the R1 is transformed by another simple unitary matrix Q2 expressed by:

Q2 =


 1 0

0 e−jθz


 . (10)



8

So that we get the last R matrix of the QRD process as follows:

R = Q2R1 =


 1 0

0 e−jθz




 X Y ejθy

0 Zejθz


 =


 X Y ejθy

0 Z


 . (11)

Based on the above procedure, for a 4× 4 matrix H , the QRD can be implemented through

the CORDIC-based systolic array as depicted in Fig. 4.

Fig. 4. Architecture diagram of CORDIC-based triangular systolic array to solve systolic array.

Three different types of cells are shown in Fig. 4: delay unit(DU), processing element(PE),

and rotational unit(RU) [15]. DU delays the incoming data by number of clock cycles that

neighboring cell takes to process the data, then deliver it to PE when it is available. PE, as the

most complex unit, can operate in either vectoring mode or rotation mode. In vectoring mode,

PE calculates the three angles described in (8), stores them into the cell memory, and meanwhile

computes the norm of the complex vector. The computed norm is passed to the east of the cell

with a flag that requests the next PE to operate in vectoring mode. In rotation mode, PE rotates

the incoming complex vector with the angles stored in the cell memory, and passes the results
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from north to south port and west to east port. Fig. 5 depicts the structure of PE in both modes

with data flows. Similarly, RU has the same operation modes as PE, but operates in vectoring

mode only when a diagonal element from a channel matrix enters from the north port.

Fig. 5. PE cell structure in (i) vectoring mode and (ii) rotation mode (a/b denotes the data that is coming into the cell from

west/north entrance).

D. LLR Computing between the detector and the decoder

The extrinsic information LE,t shown in Fig. 1 is usually expressed by the log-likelihood ratio

(LLR) of each transmitted bit as follows [10]:

LE,t(ci|y) ≈ 1
2

maxc∈Cs∩Si,+1

{
− 2
σ2
w
‖y −Hs‖22 + cTLA,t − LA,t(ci)

}

−1
2

maxc∈Cs∩Si,−1

{
− 2
σ2
w
‖y −Hs‖22 + cTLA,t + LA,t(ci)

}
,

(12)

where Cs denotes the candidate list from the list MIMO detector in the LR-aided IDD receiver,

Si,+1 represents the subset of Cs with the ith bit as +1, and similarly defined Si,−1, so that

Cs = Si,+1 ∩ Si,−1.
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Now both complexity and performance of the list MIMO detector depend on the size of the

candidate list Cs. If the list of candidates is too long, the results will be near to the optimal

MAP while the complexity is too high (near the exhaustive search). On the other hand, if the list

is too short, the performance will be degraded due to the inaccurate LE,t values. Furthermore,

the error of LE,t is especially large in the case when the output list Cs includes only candidates

with ci either +1 or −1, which may result in very large values in Eq. (12) that would cause the

decoder from correcting the falsely detected data.

The undesirable effect of the small candidates in the list MIMO detector can be reduced by

LLR clipping [4], which limits the dynamic range of LLR values so that the decoder can still

overcome the error data from the detector. The LLR clipping is defined as follows:

LclipE,t (ci|y) =





LE,t(ci|y) |LE,t(ci|y)| ≤ Lmax,

sign (LE,t(ci|y)) · Lmax |LE,t(ci|y)| > Lmax.
(13)

where the LclipE,t (ci|y) is the clipped LLR and the Lmax is the predefined maximum LLR value

for LE,t. Besides improving the performance of the list MIMO detector, LLR clipping can also

reduce the word-length of the fixed-point design and decrease the complexity of the hardware

implementation.

E. Turbo Decoding

The Turbo decoder contains two elementary MAP decoders interconnected to each other by

interleavers (π) and deinterleavers (π−1) in serial way as shown in Fig. 6.

Each elementary decoder has three inputs: the systematic bit (yks), the parity bits from the

component encoder (ykp1 or ykp2), and the extrinsic information from the other component

decoder (L(uk)), also known as a-priori information of the systematic bit. During the Turbo

decoding, the component decoders iteratively exchange the probabilities for each information bit

represented by LLR, which could ameliorates the LLRs of the information bits and improves

the decoding accuracy.

For the fixed-point implementation, here we adopt the well known Max-Log-MAP algorithm,

which has near the same performance as the optimal MAP algorithm while with much lower

complexity [17]. For the Max-Log-MAP algorithm, the calculation process of each constituent

decoder can be summarized in the following parts:
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In the standard, the number of data bits at the input to 
the turbo encoder is N (40 ≤ N ≤ 5114).  

 
                        (a)                                           (b) 
Figure 1.  (a) 3GPP Turbo encoder, (b) Trellis diagram. 

At time k, the information bit is uk (+1 or -1) and the 
turbo encoder outputs the codeword (Xk, Zk, Z’k) 
according to the encoder structure, where Xk is the 
systematic bit and Zk and Z’k are the parity bits 
generated according to the modulo-2 adders and the 
contents of the shift registers in the constituent 
encoders.  

The structure of the iterative decoder is shown in 
Figure 2. It consists of two MAP decoders linked by 
interleavers and deinterleavers (π-1). Each decoder 
takes three inputs: the channel output corresponding to 
the systematic bit (yks), the parity bits from the 
associated component encoder (ykp1 and ykp2), and the 
extrinsic information from the other component 
decoder (L(uk)), known as a-priori information of the 
systematic bit. The component decoders exploit both 
the inputs from the channel and this a-priori 
information to refine the associated probabilities for 
each information bit, which are typically represented in 
terms of Log Likelihood Ratios (LLRs) [7]. Each 
decoder iteratively refines these probabilities at each 
iteration. In the first iteration, the first component 
decoder (MAP 1) takes the channel outputs (yks, ykp1) 
and produces a soft output indicating the estimate of 
the information bits in the form of LLRs. Then, the 
systematic channel output and the a priori information 
coming from the second decoder are subtracted from 
this LLR in order to generate the extrinsic information 
that is used as the a priori information of the systematic 
bits in the second constituent decoder. This extrinsic 
information is used as additional information for the 
second decoder so as to refine the LLRs of the 
information bits. This process is done iteratively where 
an iteration comprises two decoding stages (MAP1 and 
MAP2). This iterative process ameliorates the LLRs of 
the information bits and improves the decoding process 

at each iteration. For implementation purposes, the 
well known Log-MAP algorithm is used [7].  The Log-
MAP algorithm is the original MAP algorithm [8] in 
the log domain.  

 

Decoded
Sequence

MAP 1

MAP 2

π
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π-1

)( kuL

)( kuL

)|( yuL k

)|( yuL k
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)( kk uLe

)( kk uLe

ksc yL

1kpc yL

2kpc yL

Figure 2. General structure of a turbo decoder 

The decoding process performed in each constituent 
decoder for the computation of the LLRs can be 
summarized in the following steps: 

1. Branch metric computation (BM) 

∑
−

=
+=Γ

1

02
)(

2
1),'(

n

l
klkl

c
kkk yxLuLuss   

(1) 

where uk is the information bit that makes the transition 
from state s’ to state s in the trellis. L(uk) is the a priori 
information provided by the previous decoder and xkl 
and ykl are the expected symbols (x0 and x1 in Figure 1-
(b)) and the actual received symbols (in figure 2 yks and 
ykp1 if MAP1 is used or yks  and ykp2 if MAP2 is used) at 
the channel output, respectively. Finally, Lc is the 
channel reliability value which for an Additive White 
Gaussian Noise (AWGN) channel is defined as: 
Lc=(2/σ2), and σ2 is the noise variance. 

2. Forward recursion (FW) 
( )1'

( ) * ( ') ( ', ) ; 0,1, ... 1,k ks
A s MAX A s s s k Nκ−= + Γ = − (2) 

where A0(0)=0, A0(s)=-∞, for all s ≠ 0.     
3. Backward recursion (BW) 

( )1 '
( ') * ( ) ( ', ) ; , ...1,k ks

B s MAX B s s s k Nκ− = + Γ =  (3) 

where BN(0)=0, BN(s)=- ∞, for all s ≠ 0.      
4. Log-Likelihood Ratio (LLR)          ( ))(),'()'(*)|( 1

1
),'(

sBsssAMAXyuL kkk
u

ssk

k

+Γ+= −
+=

=>

                    

          ( )1( ', )
1

* ( ') ( ', ) ( ) .
k

k k ks s
u

MAX A s s s B s−=>
=−

− + Γ +           (4) 

5. Extrinsic information 
      ( ) ( | ) ( ).k k k c ks kLe u L u y L y L u= − −  (5) 

In eqs. (2-4), Ak and Bk are called the node metrics of 
the trellis. The MAX* operator is known as the 
Jacobian logarithm, and defined here as: 
       MAX* (x, y)  = ln (ex + ey) 

44

Fig. 6. Architecture diagram of Turbo decoder

1, Branch Metric computing (BM)

γk(s
′, s) =

1

2
ukL(uk) +

Lc
2

N−1∑

l=0

xklykl. (14)

2, Forward Recursion computing (FW)

αk(s) = max
s′
{αk−1(s′) + γk(s

′, s)}; k = 0, 1, ..., N − 1. (15)

where αk=0(s = 0) = 0, and αk=0(s 6= 0) = −∞.

3, Backward Recursion computing (BW)

βk−1(s
′) = max

s′
{βk(s) + γk(s

′, s)}; k = N,N − 1, ..., 1. (16)

where βk=N(s = 0) = 0, and βk=N(s 6= 0) = −∞.

4, LLR computing

L(uk|y) = max
(s′,s)=⇒uk=+1

{αk−1(s′)+γk(s
′, s)+βk(s)}− max

(s′,s)=⇒uk=−1
{αk−1(s′)+γk(s

′, s)+βk(s)}.
(17)

5. Extrinsic information computing

Lek(uk) = L(uk|y)− LcYks − L(uk). (18)
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In the Equ. (14)-(18), uk is the information bit which produces the transition from state s′

to state s in the Turbo trellis. L(uk) is a priori information and xkl and ykl are the expected

transmitted symbols and the actual received symbols, respectively. Lc is the channel reliability

defined as Lc = 2/σ2, where σ2 is the noise average power.

IV. FIXED-POINT DESIGN FOR LR-AIDED IDD RECEIVER

In this section, the fixed-point design for the whole LR-aided IDD receiver will be analyzed

and decided based on the algorithms of the above section. For the fixed-point simulation, let

FP (iwl, fwl) be the finite representation of an wl-bit two’s complement number where fwl

is the fractional worldlength and iwl is the integer wordlength including a sign bit, so wl =

iwl+fwl. In order to compare the practical fixed-point performance under different wordlength

accuracy with the ideal floating-point performance, all the simulations are based on the same

system parameters assumed in the following paragraph.

In this paper, the LR-aided IDD receiver is applied in the i.i.d. Rayleigh fading channel with

M = N = 4, i.e., spatial multiplexing MIMO systems under 4 transmit antennas and 4 receive

antennas. The channel is time-invariant for one symbol period and changes independently from

symbol to symbol. Modulation scheme is QPSK and the SNR is defined as symbol energy

versus noise power, i.e., E[|s|2]/σ2
w. For the FCA algorithm in the list MIMO detector, Kp is

set to 2 except the candidate from LR-aided hard detection. Simulation results show that the

number of the candidate list in FCA is almost 3. For the ECC, the parallel rate 1/2 Turbo code

is adopted with the generator(1, 1+D2

1+D+D2 ). The information bit sequence is of length 1024. For

each information sequence, we perform up to 4 IDD iterations and up to 8 iterations within the

turbo decoder as suggested in [4].

A. LLR clipping between the detector and the decoder

To study the LLR clipping effect and to find the optimal clipping threshold of the LR-aided

IDD receiver, we examined the BER performance under different clipping values as shown in

Fig. 7. The simulation results demonstrate that the performance of the system can be clearly

improved by applying a proper LLR clipping threshold. On the other hand, either too large

clipping values or too small clipping values would degrade the system performance.
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Fig. 7. BER performance under different LLR clipping threshold

Based on the simulation, LLR clipping threshold with Lmax = 8 is shown to be a appropriate

and simple choice to be used, which is also consistent with the results in [18] and [4].

We also examined the effect of iteration times for the IDD and Turbo decoding on the system

performance under the above selected clipping threshold with Lmax = 8. The simulation results

are shown in Fig. 8. It can be seen that as the number of iterations increases, the performance

becomes better. However, if we keep increasing the number of iterations, the performance

improvement becomes marginal. From Fig. 8, the performance of the system with 3 IDD

iterations and 4 Turbo decoding iterations is very near to the performance of the system under 4

IDD iterations and 8 Turbo decoding iterations. In the hardware implementation, low complexity

and delay would be desirable when facing the cost. So in the following parts, we only investigate

the LR-aided IDD receiver with 3 IDD iterations and 4 Turbo decoding iterations.

B. Fixed-point design for the List MIMO detector

The QRD part in the list MIMO detector is located in the CLLL and FCA algorithms, where

QRD is used for the channel matrix H and the unimodular matrix T−1.
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Fig. 8. BER performance under different iteration in IDD and Turbo decoding

For the i.i.d. Rayleigh fading channel H with variance of one in our system configuration,

the probability that its element energy exceeds 16 is approximately 6.4× 10−58, which one can

practically ignore. Therefore 5 bits are enough to represent the integer part of H elements. During

the QRD processing, since the angles in the transforming unitary matrix are well-contained within

[−π, π], 4 bits are sufficient to represent the integer part of angles. For the fractional bit width in

both H data and the angles data, we examined the accuracy of the QRD under different fractional

bit width as shown in Fig. 9, where the accuracy is defined as the difference of Frobenius norm

between the channel matrix H and the product of Q and R, i.e.,

Accuracy(QR model) = ||H −QR||F (19)

Fig. 9 shows that 16 bits are enough for the fractional wordlength in QRD since in this case

both data and angles can achieve an accuracy within 0.14%. In sum, FP (5, 16) and FP (4, 16)

are suitable for the data and the angles in the QRD module, respectively.

For the QRD of the unimodular matrix T−1, the angles property is the same as that in the

QRD of the H , so the same FP (4, 16) is adopted; for the data part, because all the entries are

Gaussian integers, we can reduce the fractional wordlength and increase the integer wordlength
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while keep the whole wordlength invariable. Here we adopt FP (13, 8) for the data, which shows

that the performance of system would be almost the same as that of floating-point system in the

following simuation. Besides, due to the identical whole wordlength compared with the H , the

same QRD hardware implementation can be used for both unimodular matrix T−1 and channel

matrix H .

For the CLLL part, the fixed-point design is mainly referred to our former work in [12] . The

fixed-point representation of some key parameters in CLLL are as follows: the integer bits for

u, T , and internal datapath of Householder CORDIC are 11 bits, 9 bits, and 5 bits respectively;

the fraction bits for both Q and R are 13 bits; the integer bits of R after size reduction and

basis updating are 5 bits at most.

When only applying the fixed-point design for the list MIMO detector under the above analysis

in the LR-aided IDD receiver, its performances compared with the floating-point system under

LLR clipping are depicted in the Fig. 10. The results show that the BER performance degradations

of the fixed-point design for the list MIMO detector are kept less than 0.2 dB.
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Fig. 10. BER performance under fixed-point MIMO detector in LR-aided IDD receiver

C. Fixed-point design for the Turbo decoder

Fixed-point design for Turbo decoding has been well studied in the literature [19], [20], [21],

and [22]. The most important parts of the fixed-point implementation for Turbo decoding are

the BM, FW, and BW parts as shown in Section III-E. The fixed-point implementation in this

paper is mainly based on the results in [22]. Here the bits width for the BM, FW, and BW we

adopted are FP (5, 3), FP (7, 3), and FP (7, 3), respectively. And the bits width for both the

extrinsic information and prior information is FP (5, 3).

When only applying the fixed-point design for the Turbo decoder under the above analysis in

the LR-aided IDD receiver, its performance differences compared with the floating-point system

under LLR clipping are depicted in the Fig. 11. The results show that the BER performance

degradations of the fixed-point design for the Turbo decoder are kept within 0.1 dB.

D. Fixed-point performance of the whole LR-aided IDD receiver

Based on the above finite wordlength analysis for the MIMO detector and the Turbo decoder,

and by adding the fixed-point design for the LLR information between detector and decoder,
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Fig. 11. BER performance under fixed-point Turbo decoder in LR-aided IDD receiver

we can get the fixed-point performance of the whole LR-aided IDD receiver for coded MIMO

systems. Because the clipping threshold is set to 8 under the former simulation verification,

the fixed-point design of the LLR values can adopt 4 bits integer wordlength with saturation

operation. For the fraction wordlength, our simulations show that even 2 bits can keep a desirable

performance, which could reduce the complexity in the VLSI implementation.

By using FP (4, 2) fixed-point representation for the LLR information between the MIMO

detector and the decoder, and adding all fixed-point designs of the former analysis in the LR-

aided IDD receiver, its performance differences compared with the floating-point system under

LLR clipping are depicted in the Fig. 12. The results show that the BER performance degradation

of the fixed-point design for the whole LR-aided IDD receiver is kept less than 0.2 dB.

V. CONCLUSION

In this paper we have demonstrated fixed-point implementation for the whole LR-aided IDD

receiver in the MIMO coded systems, which includes the fixed-point design for the key algorithms

like CLLL, FCA, QRD, LLR clipping, and Turbo decoding. The results of the fixed-point system
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Fig. 12. BER performance under fixed-point LR-aided IDD receiver

show that its BER performance degradation is within 0.2dB compared with the floating-point

system. With these results the hardware implementation of the LR-aided IDD receiver can be

straightforwardly implemented in VLSI and FPGA, which is also our next work consideration.
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